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Traveling salesman problems(TSP) and generalized traveling salesman problems(GTSP) are two kinds of
well known and challenging combinatorial optimization problems with much diversified application fields.
Between the two application problems the GTSP is more complex than TSP. Many researchers have studied
TSP extensively, but relatively fewer studies pay attention to GTSP, and also its solution using genetic algo-
rithm (GA). In this paper, the structure of conventional chromosome is generalized to be a chromosome termed
as a generalized chromosome(GC). A genetic scheme named as generalized-chromosome-based genetic algo-
rithm (GCGA) is also presented. The proposed GCGA enables GTSP and TSP to be solved under a uniform
algorithm mode. Forty one benchmark test problems have been solved with the known optimal solutions using
the proposed algorithm to verify its validity. The test results show that GCGA can directly solve GTSP without
the need of intermediate transformation to TSP.
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I. INTRODUCTION

The generalized traveling salesman problem(GTSP) rep-
resents a kind of combinatorial optimization problem, which
has been introduced by Henry-Labordere[1], Saksena[2],
and Srivastava[3] in the context of computer record balanc-
ing and of visit sequencing through welfare agencies since
1960s. The GTSP can be described as the problem of seeking
a special Hamiltonian cycle with lowest cost in a complete
weighted graph. LetG=sV ,E ,Wd be a complete weighted
graph whereV =hv1,v2, . . . ,vnj snù3d, E=heij uvi ,v j PVj
andW =hwij uwij ù0 and wii =0,∀ i , j PNsndj are vertex set,
edge set, and cost set, respectively. Andvi , eij , wij are the
ith vertex, the edge connecting verticesvi andv j, and the
cost/weight corresponding to edgeeij , respectively.Nsnd is
the subseth1,2, . . . ,nj of the natural number set. The vertex
set V is partitioned into m possibly intersecting groups
V1,V2, . . . ,Vm with uV juù1 and V =ø j=1

m V j, where u . . .u is
the element number of a limited set. The special Hamiltonian
cycle is required to pass through all of the groups, but not all
of the vertices differing from that of TSP. For convenience,
we also call W as the cost matrix and take it asW
=swijdn3n. There are two different kinds of GTSP under the
abovementioned framework of the special Hamiltonian cycle
[4,5]: (1) the cycle passes exactly one vertex in each group
(refer to Fig. 1) and(2) the cycle passes at least one vertex in
each group(refer to Fig. 2). The first kind of GTSP is also
known as E-GTSP, where E stands for equality[5]. In this
paper we only discuss the GTSP for the first case and will
still call it as GTSP for convenience.

GTSP has extensive application fields. Laportet al. [4],
Lien et al. [6], and Castelinoet al. [7] reported the applica-

tions of GTSP. Just as mentioned in Ref.[6], “for many
real-world problems that are inherently hierarchical, the
GTSP offers a more accurate model than the TSP.” Gener-
ally, GTSP provides a more ideal modeling tool for many
real problems. Furthermore, GTSP can include the grouped
and isolated vertices at the same time according to our
present extension. Therefore, GTSP includes TSP theoreti-
cally (see Fig. 3) and application fields of GTSP are wider
than those of TSP.

Although since late 1960s GTSP has been proposed[1–3],
the related reported works are very limited compared with
those on TSP[8–11] and the existing algorithms for GTSP
are mainly based on dynamic programming techniques
[1–3,5,12,13]. However, because of its NP-hard quality, only
a few solutions of modest-size problems are supported by the
current hardware technology and most of them fail to obtain
the results due to the huge memory required in dynamic
programming algorithms and the problem of lengthy compu-
tational time. The main methodology of the dynamic pro-
gramming algorithms is to transform the GTSP into TSP and
then to solve the TSP using existing algorithms[5,13–15].

*Corresponding author. Electronic address: liangyc@ihpc.a-
star.edu.sg FIG. 1. Exactly one vertex is visited in a GTSP cycle.
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The shortcomings of these methods are that the transforma-
tion increases the problem dimension dramatically and in
some cases the dimension would expand up to more than
three times of the original[6,16–18]. Therefore, although
theoretically the GTSP could be solved using the correspond-
ing transformed TSP, the technological limitation ruins its
practical feasibility. Some studies have been performed to
discuss and solve the problem[19–21].

Genetic algorithm(GA) is one of the powerful tools to
deal with NP-hard combinatorial optimization problems and
has been widely applied for finding the solution of TSP due
to its high efficiency and strong searching ability. However,
theoretical and application studies related to using GA meth-
ods to solve GTSP are very few. The authors of Ref.[19]
proposed a hybrid GTSP solving algorithm based on
random-key GA [22] and local search method[23]
(HRKGA). However, we have noted that the intensive local
search schemes have resulted in lengthy computation, which
may hamper the method to be used to handle large scale
problems. To explore the application of GA on GTSP solu-
tion, especially, to enable GA-based methods to deal with
some problems arising from industrial applications, this pa-
per extends the structure of the conventional chromosome
used in GA and proposes a GA based on the extended chro-
mosome. We name the chromosome as a generalized chro-
mosome (GC), and the proposed GA as generalized-
chromosome-based GA(GCGA). The advantages of the
GCGA are that it does not require the transformation from
GTSP to TSP and remove the limitation of triangle inequality
of the cost matrix, which enables the GCGA to be able to run
with high efficiency. Furthermore, the GCGA provides a con-
sistent mode to solve GTSP, TSP, and even GTSP-TSP hy-
brid problems within GA framework.

II. METHODOLOGY

The commonly used decimal integral encoding chromo-
some in the GA for solving TSP has quite a few advantages
such as intuition, easy understanding, convenient operating,
and high efficiency, which promote the wide applications of
GA to the TSP. However, it looses its predomination when it
is used for the GTSP. Because the vertices need to be
grouped and usually a group contains more than one vertex,
the chromosome must contain information to decide which

vertex is included in the current tour in each group besides
the visiting sequence. The proposed GCGA with generalized
chromosome can be used to deal with this request easily.

We present the designed GC in Sec. II A, and then pro-
pose the GCGA in Sec. II B.

A. Generalized chromosome

Some definitions used in this paper are presented as fol-
lows.

Definition 1. A vertex in graphG=sV ,E ,Wd is said to be
an original vertex if it is denoted in the form ofvi
fi PNsndg.

Definition 2. A group V j f j PNsmdg is said to be a super
vertex if uV ju.1.

Definition 3. An original vertexvi fi PNsndg is said to be
a scattering vertex ifvi PV j and uV ju=1 f j PNsmdg.

Definition 4. An original vertexvi fi PNsndg is said to be
an element of certain super vertex if it belongs to the super
vertex.

Definition 5. Either a super vertex or scattering vertex is
said to be a generalized vertex if dealing with it in a uniform
way is needed.

Definition 6. A cycle is said to be a GTSP cycle if it
contains all of the generalized vertices.

Definition 7. A GTSP cycle is said to be a valid GTSP
cycle if it satisfies passing each original vertex at most one
time.

Definition 8. A GTSP cycle is said to be an invalid GTSP
cycle if it is not a valid one.

To facilitate the discussion, the groups are further distin-
guished by their vertex numbers according to definitions 2
and 3 in this paper. Then the group numberm can be decom-
posed into two parts, i.e.,

m= m̂+ m̃, s1d

wherem̂ is the number of the super vertices,m̃ the number of
the scattering vertices. We refer to a GTSP withm̂Þ0 and
m̃Þ0 as a GTSP-TSP hybrid problem. Denote all of the
super vertices as

u1,u2, . . . ,um̂, s1ad

where

ui = hui,1,ui,2, . . . ,ui,ki
j, s1bd

ki fi PNsm̂dg represents the number of elements contained in
the ith super vertex,ui,l fl PNskidg the lth element belonging

FIG. 2. At least one vertex is visited in a GTSP cycle.

FIG. 3. Relationship between GTSP and TSP.
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to the super vertexui, l the index ofui,l in the super vertexui.
Denote all of the scattering vertices as

ũ1,ũ2, . . . ,ũm̃. s1cd

The super vertices and scattering vertices are sequenced as
follows:

u1,u2, . . . ,um̂,ũ1,ũ2, . . . ,ũm̃. s1dd

The corresponding generalized vertices are denoted as

w1,w2, . . . ,wm̂+m̃. s1ed

The relationship among the generalized vertices, super verti-
ces and scattering vertices are as follows

wk =Huk 1 ø k ø m̂

ũk−m̂ m̂+ 1 ø k ø m̂+ m̃, k P Nsm̂+ m̃d.
s2d

Therefore, we also refer to the super vertexui
si =1,2, . . . ,m̂d as theith generalized vertex, and scattering
vertex ũi si =1,2, . . . ,m̃d as thesi +m̂dth generalized vertex.
Obviously, the number of generalized vertices ism̂+m̃, i.e.,
the original number of the groups. Notice that an original
vertex may belong to more than one super vertex at the same
time, hence, the following inequality holds

n ø m̃+ o
i=1

m̂

ki . s3d

The mode of the designed GC is shown in Fig. 4. The GC
consists of two parts. The left part containsm̂ genes and is
named as head; the right part containsm̂+m̃ genes and is
named as body. When 0, i øm̂, the ith gene lies in the head
part, which stores the indexl fl PNskidg of the element vis-
ited by the current tour in the super vertexui. When m̂, i
øm̂+sm̂+m̃d, the ith gene lies in the body part, which stores
the indexk fkPNsm̂+m̃dg of the generalized vertex. From
Eq. (2), it follows that if i satisfies

i − m̂ø m̂,

then the gene represents the super vertexui−m̂ and if i satis-
fies

i − m̂. m̂,

then the gene represents the scattering vertexũsi−m̃d−m̃.
In the decoding process, the body part defines a GTSP

cycle and the head part is used to determine the visited ver-
tex in each super vertex. If we denote

H = hhuh=fhs1d,hs2d, . . . , hsm̂dg, hsid P Nskid, i P Nsm̂dj,

s4d

wheref. . .g is a limited sequence,hsid represents an element
index belonging to the super vertexui, then H is the set

consisting of all of the feasible gene segments lying in the
head part. And if we denote

B = hbub = Psmdj, s5d

where b=Psmd=fb1,b2, . . . ,bmg is a permutation of
1,2, . . . ,m, thenb represents a GTSP cycle. ThereforeB is
the set consisting of all feasible gene segments lying in the
body part. Then we can denote the setD consisting of all of
the GCs corresponding to feasible GTSP cycles as

D = hxux = h % b, h P H, b P Bj, s6d

where x=h% b represents a GC compounded of two gene
segments belonging toH andB, respectively.

As an illustration, let us consider a vertex setV
=h1,2, . . . ,20j. Assume that parts of its vertices are parti-
tioned into three groups as follows:

V1 = h1,2,3,4,12,13,15,17j, s7d

V2 = h3,4,6,7,16,19j, s8d

V3 = h8,9,10,11j, s9d

and the scattering vertices are 5, 14, 18, 20(Fig. 5). Then we
have

u1 = hu1,1,u1,2,u13,u1,4,u1,5,u1,6,u1,7,u1,8j

u2 = hu2,1,u2,2,u2,3,u2,4,u2,5,u2,6j
s10d

u3 = hu3,1,u3,2,u3,3,u3,4j

ũ1 = 5,ũ2 = 14,ũ3 = 18,ũ4 = 20,

where

u1,1= 1,u1,2= 2,u13 = 3,u1,4= 4,u1,5= 12,u1,6= 13,u1,7

= 15,u1,8= 17

u2,1= 3,u2,2= 4,u2,3= 5,u2,4= 6,u2,5= 16,u2,6= 19

FIG. 4. Mode of the generalized
chromosome.

FIG. 5. Super and scattering vertices.
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u3,1= 8,u3,2= 9,u3,3= 10,u3,4= 11

ũ1 = 5,ũ2 = 14,ũ3 = 18,ũ4 = 20.

The original vertices can be sorted randomly in each super
vertex. An increasing sequence is recommended here. Simi-
larly, the scattering vertices are sorted in the same way. In
the example,m̂ and m̃ are taken as 3 and 4, respectively,
which means that the head part has threesm̂=3d genes and
the body part has sevensm̂+m̃=7d genes in a GC. To illus-
trate the GC more clearly, we design two GC instances. Let

h1 = h2 = f3,1,2g, s11d

b1 = f3,5,6,1,4,2,7g, s12d

b2 = f3,5,6,4,1,2,7g, s13d

then we can obtain two GCs as follows:

x1 = h1 % b1, s14d

x2 = h2 % b2. s15d

Their structures are shown in Figs. 6 and 7, and the corre-
sponding GTSP cycles are shown in Figs. 8 and 9. We take
x1 as an example to interpret the decoding process of the GC.
There are three genes 3, 1, and 2 lying in the head of the GC,
which represent that the vertexu1,3 in super vertexu1, u2,1 in
super vertexu2, andu3,2 in super vertexu3 are visited in the
GCGA cycle. There are seven genes 3, 5, 6, 1, 4, 2, and 7
lying in the body of the GC, which determine the visited
sequence of the seven generalized vertices. The tour corre-
sponding tox1 is

a1:w3 → w5 → w6 → w1 → w4 → w2 → w7 → w3,

that is,

a2:u3 → ũ2 → ũ3 → u1 → ũ1 → u2 → ũ4 → u3.

If the index of a generalized vertex is not larger thanm̂, it is
a super vertex; if its index is larger thanm̂, it is a scattering
vertex. Hence, according to the above decoding rules, the
GC x1 stands for the tour

a3:u3,2→ ũ2 → ũ3 → u1,3→ ũ1 → u2,1→ ũ4 → u3,2,

whose original-vertex form is

a4:v9 → v14→ v18→ v3 → v5 → v3 → v20→ v9,

i.e.,

a5:9→ 14→ 18→ 3 → 5 → 3 → 20→ 9.

Similarly, according to the above decoding rules, five differ-
ent forms of the GTSP cycles corresponding to GCx2 are,
respectively,

b1:w3 → w5 → w6 → w4 → w1 → w2 → w7 → w3,

b2:u3 → ũ2 → ũ3 → ũ1 → u1 → u2 → ũ4 → u3,

b3:u3,2→ ũ2 → ũ3 → ũ1 → u1,3→ u2,1→ ũ4 → u3,2,

b4:v9 → v14→ v18→ v5 → v3 → v3 → v20→ v9,

b5:9→ 14→ 18→ 5 → 3 → 3 → 20→ 9.

It can be seen that there is a subtour containingv3 andv5 in
both tours a4 and a5, which has been marked in dotted line in
Fig. 8, and that there is an edge connecting itself on vertexv3
in both b4 and b5. The vertexv3 is visited twice of the two
cases mentioned above. The edge with the same starting and
ending vertices is referred to as a ring in the graph theory.
The dashed line in Fig. 9 shows a ring for vertexv3. These
cases both result from the overlap between the super vertices
u1 and u2. From the definition of the cost matrix it can be
seen that the ring corresponds to a zero cost, consequently,
the cost ofx1 is higher than that ofx2. If all of the rings in a
GC are removed in the decoding process, a valid GTSP cycle

FIG. 7. Generalized chromosome of the second example.

FIG. 8. GTSP cycle corresponding to the first example.

FIG. 9. GTSP cycle corresponding to the second example.

FIG. 6. Generalized chromosome of the first example.
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will be obtained. Although these cases are invalid in TSP,
they are valid in GTSP, such as a1, a2, a3 and b1, b2, b3.
Hence, we permit their existence in the population, but not
rectify them into absolutely legal ones in each generation. In
fact, because the cost ofx1 is larger than that ofx2, the fitness
value of x1 must be lower than that ofx2. The generation
renewal will remove this kind of GCs such asx1 with rela-
tively lower fitness. Moreover, those GCs such asx2 are
valid GTSP cycles as long as all of their rings are removed at
the last generation. Hence, the proposed GCGA omits the
rectification during the intermediate generations, which re-
duces the work on algorithm coding, increases the computing
efficiency, keeps the diversity of gene segments and pro-
motes the generation of excellent chromosomes.

B. Generalized-chromosome-based genetic algorithm

The special form of the designed chromosome makes the
standard genetic operations not available, therefore, a set of
genetic operations is proposed in this paper. The proposed
algorithm is named as generalized-chromosome-based ge-
netic algorithm(GCGA). To make the GCGA to be under-
stood easily by researchers acquainted with standard GA, the
work flow of the conventional algorithm is adopted[24],
which can be described as follows.

(a) Initialize population: Utilize the initializing operator
on the head set and the body set, and denote the size of the
population asSp.

(b) Select reproductive population: Select the individual
repeatedly from the old population according to “Survival of
the fittest” and put the selected individual into a temporary
population, named reproductive population, till its size
equals toSp.

(c) Crossover process: Select two individuals randomly in
the reproductive population and generate a random number
in f0,1g, denote it asr. If r is smaller than or equal to the
crossover probability, utilize the crossover operator on the
two selected individuals to get two offspring individuals, ifr
is larger than the crossover probability, take the two un-
changed selected individuals as offspring individuals.

(d) Mutation process: Generate a random number inf0,1g
and denote it ash. If h is smaller than or equal to the mu-
tation probability, utilize the mutation operator on the indi-
viduals going through the crossover process. Ifh is larger
than the mutation probability, keep the individuals un-
changed.

(e) Inversion process: Utilize the inversion operator on the
individuals going through the mutation process.

(f) Denote the current size of the new population asSc. If
Sc is smaller thanSp, return to step c; else copy the new
population into the old one.

(g) Denote the current generation number ask and the
maximal generation number asK. If k is smaller thanK,
return to step B; else output the results including the indi-
viduals with respect to the maximal, average and minimal
fitness, and then stop.

The flow chart of the proposed GCGA algorithm is shown
in Fig. 10 and the work behaviors of its key genetic operators
are explained as follows.

1. Initializing operator P

Initializing operatorP is used to generate an initial popu-
lation. It is a two-element random operator. Its two variables
areH andB, and its result is a subset ofD. DenotingP as a
population, then the initialization ofP can be represented as

P = PNsH,Bd, s16d

wherePN is an operator to generate an initial population with
sizeN. Its flow chart is shown in Fig. 11.

2. Generalized crossover operatorC

To implement the crossover operation and generate new
chromosomes, a generalized crossover operator is defined as

C:D 3 D → D 3 D. s17d

It is a two-element random operator. Its variables are the
elements ofD. If x,yPD, then C generates a pair of new
GCs as

FIG. 10. Flow chart of the GCGA algorithm.
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sx8,y8d = Csx,yd, s18d

wherex8,y8 are the two offspring chromosomes generated by
operatorC at the same time based on the parental chromo-
somesx andy. Generally, if

sx18,y18d = Csx,yd, s19d

sx28,y28d = Csx,yd s20d

are generated at different time, the following two equations

x18 = x28, s21d

y18 = y28, s22d

do not necessarily hold, because the generalized crossover
operatorC is a random operator. Equations(21) and (22)
hold if and only if the two parental chromosomes and the
crossover segment positions are exactly the same.

Let x=hx % bx and y=hy % by, then the flow chart of the
generalized crossover operatorC is shown in Fig. 12. The
behavior of the operator is somewhat similar to the two-point
crossover in the standard GA. Let the two crossover points
selected randomly bei1 and i2 (assumei1, i2), where i1
=random(m̂+sm̂+m̃d), i2=random(m̂+sm̂+m̃d), and
randomsnd is a generator of random numbers with uniform
distribution withinNsnd.

If i1.m̂ then the crossover takes place in the body parts.
In this case, the effect of operatorC is equal to the conven-
tional crossover in some extent, because the body parts of
GC are equivalent to two normal chromosomesbx and by

with length ofm̂+m̃. But because the head parts are omitted,
the crossover points should be translated as

i18 ⇐ i1 − m̂, s22ad

i28 ⇐ i2 − m̂. s22bd

Denote the crossover on two normal chromosomes as

bx ^ by → sbx8,by8d, s22cd

wherebx8 ,by8PB. Then combiningbx8 andby8 with the original
head parts ofx and y, respectively, offspring GCs corre-
sponding to the GTSP cycles can be obtained

x8 = hx % bx8, s23d

y8 = hy % by8. s24d

If i2øm̂, then the crossover takes place in the head parts.
In this case, it is only needed to exchange the genes within
the crossover segments. The process can be denoted as

hx ^ hy → shx8,hy8d, s24ad

wherehx8 ,hy8PH. Then combininghx8 andhy8 with the origi-
nal body parts ofx andy, offspring GCs corresponding to the
GTSP cycles can be generated as

x8 = hx8 % bx, s25d

y8 = hy8 % by. s26d

If i1øm̂ andi2.m̂, then the generalized crossover can be
treated as the combination of the above cases. One crossover
operation takes place on the gene segment fromsm̂+1d to i2,
another fromi1 to m̂. The two crossovers can be imple-
mented asynchronously in two steps. Combining the new
head and body parts obtained in the two steps, we can have
the offspring GCs corresponding to the GTSP cycles

x8 = hx8 % bx8, s27d

y8 = hy8 % by8. s28d

3. Generalized mutation operatorM

To increase the diversity of the gene segments, the gener-
alized mutation operatorM is designed based on the inser-
tion mutation used in standard GA

M :D → D. s29d

It is a one-element random operator, and its variable is an
element belonging to GC setD. If xPD, then under the
effect of generalized mutation operatorM it will result in a
new GC

x8 = M sxd. s30d

Similarly to the generalized crossover operatorC, if

x18 = M sxd and s31d

FIG. 11. Flow chart of the initializing operator.
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FIG. 12. Flow chart of the generalized crossover operator.
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x28 = M sxd s32d

are two new GCs generated byM based onx, generally,

x18 = x28, s33d

does not necessarily hold. Equation(33) holds if and only if
the preliminary and insertion genes are exactly identical, re-
spectively.

Let x=hx % bx and

hx = fhs1d,hs2d, . . . ,hsm̂dg, s34d

bx = fbs1d,bs2d, . . . ,bsm̂+ m̃dg. s35d

The flow chart of operatorM is shown in Fig. 13. A
preliminary genei is randomly selected,i =random(m̂+sm̂
+m̃d), which is taken as the gene to be inserted.

The difference between GCGA and standard GA is that if
i .m̂ then the preliminary gene lies in the body part and it
can be determined that the preliminary gene is thesi −m̂dth
componentbsi −m̂d of bx. Removing the preliminary gene
from bx and forwardly moving genes behindbsi −m̂d one bit
sequentially, a temporary gene segment can be generated as
follows

FIG. 13. Flow chart of the
generalized mutation operator.
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bx9 = fbs1d,bs2d, . . . ,bsi − m̂− 1d,bsi − m̂+ 1d, . . . ,bsm̂+ m̃dg.

s36d

Then an inserted gene positions on bx9 with length of m̂
+m̃−1 is randomly selected as

s= randomsm̂+ m̃− 1d. s37d

After getting the inserting gene position, we use the general-
ized mutation operator to move the genes behindbssd back-
wardly and then copy the preliminary gene into the compo-
nentbss+1d. The mutation process can be denoted as

x8 = M sxd = hx % bx8, s38d

where

bx8 = fbs1d,bs2d, . . . ,bsi − m̂− 1d,bsi − m̂+ 1d . . . ,bssd,bsi

− m̂d,bss+ 1d, . . . ,bsm̂+ m̃dg. s39d

If i øm̂, then the preliminary gene lies in the head part, and
it can be determined that the gene is theith componenthsid
of hx. In this case, no inserting gene is required. The gener-
alized mutation operator can be used to select an integer in
Nskid randomly andhsid can be replaced by the random se-
lected integer. The mutation process can be denoted as

x8 = hx8 % bx, s40d

where

hx = fhs1d,hs2d, . . . ,hsi − 1d,randomskid,hsi + 1d, . . . ,hsm̂dg.

s41d

4. Generalized reversion operatorR

To enhance the convergent speed of the GCGA, the gen-
eralized reversion operator is designed

R:D → D. s42d

It is a one-element random operator, and its variable is also
an element belonging to the setD. If xPD, then after imple-
menting the generalized reversion operatorR, we can obtain
a new GC

x8 = Rsxd. s43d

Similarly to generalized mutation operatorM , if

x18 = Rsxd, s44d

x28 = Rsxd, s45d

are two new GCs generated byR based onx,

x18 = x28 s46d

dose not necessarily hold generally. Equation(46) holds if
and only if the two reversion points are exactly identical. It is

different from the generalized mutation operatorM that R
affects only the body part of the GC. Let the two reversion
points bei1 and i2 si1, i2d as shown in Fig. 14. Then the
flow chart of the generalized reversion operatorR can be
shown in Fig. 15.

Similarly to the conventional reversion operation, opera-
tor R can be used to select two reversion pointsi1 and i2
randomly

i1 = randomsm̂+ m̃d, s47d

i2 = randomsm̂+ m̃d. s48d

If any of bsi1d and bsi2d is super vertex, then the following
cost computation is related to the original vertex visited in its
super vertex wherebsi1d or bsi2d appears. Denote

FIG. 14. Gene selection of the
generalized reversion operator.

FIG. 15. Flow chart of the generalized reversion operator.
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g1 = dfbsid,bs jdg + dfbsi + 1d,bs j + 1dg, s49d

g2 = dfbsid,bs j + 1dg + dfbsi + 1d,bs jdg, s50d

whereds· , ·d is the cost/weight between two corresponding
vertices. If g2,g1, then reverse the gene segment from
bsi1+1d to bsi2d and a new body part can be obtained

bx8 = fbs1d, . . . ,bsb1dbsi2d,bsi2 − 1d, . . . ,bsi1 + 2d,bsi1
+ 1d,bsi2 + 1d, . . . ,bsm̂+ m̃dg. s51d

Combining the new body part and the original head part, we
can obtain a new GC

x8 = hx % bx8; s52d

if else, the generalized reversion operator does nothing.

TABLE I. Results and comparisons for benchmark test problems.

Five runs Statistical information Time(s)
Problem Opt 1 2 3 4 5 Max Min Ave Errs%d GCGA HRKGA

10ATT48 5394 5394 5394 5394 5394 5394 5394 5394 5394 0.00 0.78 2.08
10GR48 1834 1860 1834 1834 1834 1834 1860 1834 1839 0.27 0.23 1.81
10HK48 6386 6592 6573 6386 6386 6386 6592 6386 6464 1.22 0.19 2.91
11EIL51 174 176 176 177 176 176 177 176 176 1.15 0.87 2.04
12BRAZIL58 15332 15332 15332 15332 15332 15332 15332 15332 15332 0.00 0.26 2.03
14ST70 316 316 316 316 316 316 316 316 316 0.00 1.23 2.03
16EIL76 209 214 222 214 214 214 222 214 215 2.87 1.45 1.71
16PR76 64925 64925 64925 64925 64925 64925 64925 64925 64925 0.00 1.29 2.36
20RAT99 497 497 497 497 500 497 500 497 498 0.10 2.02 3.40
20KROA100 9711 9758 9758 9758 10019 9822 10019 9758 9823 1.15 1.93 2.80
20KROB100 10328 10492 10335 10465 10328 10328 10492 10328 10389 0.59 1.79 3.35
20KROC100 9554 9554 9554 9554 9570 9554 9570 9554 9557 0.03 1.92 4.12
20KROD100 9450 9450 9450 9450 9450 9451 9451 9450 9450 0.00 1.96 5.11
20KROE100 9523 9523 9802 9637 9523 9541 9802 9523 9605 0.86 2.00 4.07
20RD100 3650 3653 3653 3653 3810 3653 3810 3653 3684 0.93 1.66 2.03
21EIL101 249 253 251 251 251 251 253 251 251 0.80 1.79 3.96
21LIN105 8213 8213 8213 8213 8213 8213 8213 8213 8213 0.00 2.10 3.68
22PR107 27898 27901 27901 27898 27898 27950 27950 27898 27909 0.04 2.25 4.07
24GR120 2769 2769 2797 2805 2779 2837 2792 2837 2779 1.01 1.19 6.04
25PR124 36605 40337 36605 36605 36762 36605 40337 36605 37382 2.12 2.51 5.11
26BIER127 72418 72418 72418 91819 72498 73252 91819 72418 76481 5.61 2.49 2.85
28PR136 42570 42570 42570 42570 42570 42570 42570 42570 42570 0.00 2.72 5.71
29PR144 45886 45890 46657 45890 45891 45891 46657 45890 46043 0.34 2.67 9.83
30KROA150 11018 11132 11602 11117 11737 11451 11737 11117 11407 3.53 3.26 4.72
30KROB150 12196 12453 12211 12428 12376 13728 13728 12211 12639 3.63 3.29 12.36
31PR152 51576 51576 51820 51628 51610 51576 51820 51576 51642 0.13 2.09 14.11
32U159 22664 22664 22981 22667 22664 22664 22981 22664 22728 0.28 2.90 9.72
39RAT195 854 870 866 874 871 870 874 866 870 1.87 4.89 17.09
40D198 10557 10626 10620 10574 10631 10557 10631 10557 10601 0.42 3.50 11.32
40KROA200 13406 13763 14848 13514 13734 13735 14848 13514 13918 3.82 4.73 16.42
40KROB200 13111 13265 13222 13164 13122 13117 13265 13117 13178 0.51 4.93 13.78
45TS225 68340 68643 68756 70886 70097 68756 70886 68643 69427 1.59 1.46 16.31
46PR226 64007 64007 65423 64007 64007 66074 66074 64007 64703 1.09 4.99 14.67
53GIL262 1013 1051 1096 1051 1040 1135 1135 1040 1074 6.02 4.76 22.03
53PR264 29549 29894 29894 30478 29549 29725 30478 29549 29908 1.21 4.26 22.79
60PR299 22615 23508 23086 23446 23089 22762 23508 22762 23178 2.49 2.96 24.6
64LIN318 20765 20977 21165 25330 21870 21237 25330 20977 22115 6.50 2.04 43.61
80RD400 6361 6465 6599 6795 6630 6535 6795 6465 6604 3.82 5.30 87.11
84FL417 9651 9763 9757 9730 9670 9706 9763 9670 9725 0.77 8.21 177.3
88PR439 60099 61395 61030 70416 60816 60529 70416 60529 62837 4.56 3.51 234.54
89PCB442 21657 22564 23062 24041 22976 23836 24041 22564 23296 7.57 5.06 88.71
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5. Generalized fitness function

In this paper, we still take the fitness function similar to
that used in conventional GA, but with a little alteration

fsxd = aÎm̂+ m̃A/Tsxd, s53d

wherexPD, a is a preset constant,m̂ andm̃ are the numbers
of super vertex and scattering vertex, respectively,A is the
edge length of the minimal regular polytope containing the
vertex setV. If V is a point set in a two-dimension Euclidian
space, thenA is the edge length of minimal square containing
the point setV, Tsxd is the objective function, i.e., the real
cost of a GTSP cycle, which has the form

Tsxd = Tshx % bxd = dfbs1d,bsm̂+ m̃dg + o
i=2

m̂+m̃

dfbsid,bsi − 1dg.

s54d

Notice that the difference between GTSP and conven-
tional GA fitness functions is that the GTSP fitness function
may include only part of the vertices withinV, whereas the
conventional GA fitness exactly includes all of the vertices
within V. Moreover, in the fitness function of GTSP if some
super vertices are included, their corresponding cost is com-
puted with the original vertices that the current GTSP cycle
visits.

III. NUMERICAL EXPERIMENTS

To verify the validity of the proposed GCGA, we first
calculate all the instances used in Ref.[19] on a PC with
1.4 GHz processor and 256 M memory. These instances can

be obtained from TSPLIB library[25] and were originally
generated for testing standard TSP algorithms. To test GTSP
algorithms, Fischettiet al. [5] provided a partition algorithm
to convert the instances used in TSP to those which could be
used in GTSP. Because the partition algorithm can generate
the same results at different running provided that the data
order are the same, the partition algorithm can be used to
generate test data for different algorithms. In the following
experiments, we take the population size as 100, maximal
generation as 200, crossover probability as 0.89, and muta-
tion probability as 0.003.

Table I presents the results and some comparisons be-
tween the proposed GCGA and HRKGA, in which the first
column stands for the names of the test instances, the second
for exact optimal tour length for each problem given in Ref.
[5], the third to the seventh for the result in each run time,
the eighth to the eleventh for some statistical information
including the maximum(Max), minimum (Min), average
(Ave) length for each five run and the relative error(Err),
respectively, where the relative error is calculated as

Err =
Ave − Opt

Opt
3 100 % ,

and the last two columns for the average run time used by
the GCGA and HRKGA in five runs, respectively. Table I
shows that the GCGA can be used to solve GTSP effectively
and efficiently. From Table I it can be seen that among 41
test problems there are 7 instances(10ATT48, 12BRAZIL58,
14ST70, 16PR76, 20KROD100, 21LIN105, and 28PR136)

FIG. 16. Forward segments of time consumption trends of
GCGA and HRKGA.

FIG. 17. Middle segments of time consumption trends of GCGA
and HRKGA.

FIG. 18. Backward segments of time consumption trends of
GCGA and HRKGA.

FIG. 19. Real picture of the block with some machined simple
shapes.
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with zero relative errors for five runs. It shows that if the
GCGA is integrated with some proper local improvement
methods, good results could be obtained using GCGA. In all
the simulations the maximum relative error is 7.57% and the
average relative error of all the 41 test problems is 1.68%. To
examine the time consumption trends clearly, Figs. 16–18
show the time consumption trends when using GCGA and
HRKGA, respectively. When vertex numbers are small, the
time consumption trends of the GCGA and HRKGA have
almost the same increasing ratio, but the time consumption
of GCGA corresponding to any given vertex number is
smaller than that of HRKGA as shown in Fig. 16. With the
increasing of the vertex numbers, the time consumption in-
creasing ratio of the HRKGA has exceeded that of the
GCGA as shown in Fig. 17. In the last segment as shown in
Fig. 18, the time consumption increasing ratio of the
HRKGA becomes nearly quadratic except for the last in-
stance with 442 cities, however, that of the GCGA is still as
linear.

Two real application examples are also implemented us-
ing the GCGA. One is to machine some simple geometrical
shapes in a rectangular plate as shown in Fig. 19. Another
application example is to machine an international confer-
ence logo as shown in Fig. 20. To obey the technical restric-
tions and obtain high efficiency and smooth contours, the
cutter should go down into a shape and come back to the
starting point after going continuously along the designed
pattern in slots(Fig. 19) or protruding block patterns(in Fig.

20). A geometrical shape or a letter can be regarded as a
super vertex, and then the machine cutter should try to mini-
mize the jump or the time spent from one shape(letter) to
another shape(letter) as the time spent is deemed to be un-
productive. The GTSP is used to model both of the two ex-
amples. The proposed GCGA algorithm is employed to ob-
tain the minimal jumping length. The results are shown in
Figs. 21 and 22.

IV. CONCLUSIONS AND DISCUSSIONS

In order to deal with the GTSP instances using GA effi-
ciently, this paper designs a generalized chromosome at first,
and then proposes the generalized-chromosome-based ge-
netic algorithm. Simulations for both benchmark test prob-
lems and real application instances show that the proposed
algorithm can be used to solve the GTSP effectively and
efficiently. Furthermore, the proposed GCGA could solve
TSP and GTSP instances in a unison mode. Whenm̂=0, i.e.,
the number of super vertices is zero, the algorithm runs on an
entire TSP mode. And whenm̃=0, i.e., the number of the
scattering vertices is zero, the algorithm runs on an entire
GTSP mode. When bothm̂Þ0 andm̃Þ0 hold, the algorithm
deals with the GTSP-TSP hybrid cases.

Compared with Ref.[19], it can be seen that the proposed
GCGA is superior to the existing HRKGA in running time.
The time consumption trend of the GCGA is approximately
linear, whereas that of the HRKGA is nearly quadratic when
the vertices exceed some number. Numerical simulations
show that the local search could further improve the solution
quality, however, the time consumption problem is serious.
The proposed algorithm could be an ideal choice to find a
quasioptimal route with high efficiency for machining appli-
cations.

FIG. 20. Suggested machining tour of the block machining ob-
tained by GCGA.

FIG. 21. Real picture of the internal conference logo.

FIG. 22. Suggested machining tour of the conference obtained
by GCGA.

WU et al. PHYSICAL REVIEW E 70, 016701(2004)

016701-12



ACKNOWLEDGMENTS

The authors would like to thank Lim Tiong Hwa and Yap
Poh Heng for providing the pictures of machining. The first
two authors were grateful to the support of the science-
technology development project of Jilin Province of China

under Grant No. 20030520, the doctoral funds of the Na
tional Education Ministry of China under Grant No.
20030183060, and the key science-technology project of the
National Education Ministry of China under Grant No.
02090.

[1] A. L. Henry-Labordere, RIRO B 2, 43(1969).
[2] J. P. Saskena, CORS J. 8, 185(1970).
[3] S. S. Srivastava, S. Kumar, R. C. Garg, and P. Sen, CORS J. 7,

97 (1969).
[4] G. Laporte, A. Asef-vaziri, and C. Sriskandarajah, J. Oper.

Res. Soc.47, 1461(1996).
[5] M. Fischetti, J. J. Salazar, and P. Toth, Oper. Res.45, 378

(1997).
[6] Y. N. Lien, E. Ma, and B. W.-S. Wah, J. Chem. Inf. Comput.

Sci. 74, 177 (1993).
[7] K. Castelino, R. D’Souza, and P. K. Wright, http://

kingkong.me.berkeley.edu/;kenneth/
[8] N. E. Bowler, T. M. A. Fink, and R. C. Ball, Phys. Rev. E68,

036703(2003).
[9] M. Andrecut and M. K. Ali, Phys. Rev. E63, 047103(2001).

[10] T. Munakata and Y. Nakamura, Phys. Rev. E64, 046127
(2001).

[11] J. Bentner, G. Bauer, G. M. Obermair, I. Morgenstern, and J.
Schneider, Phys. Rev. E64, 036701(2001).

[12] G. Laporte and Y. Nobert, INFOR 21, 61(1983).
[13] C. E. Noon and J. C. Bean, Oper. Res.39, 623 (1991).
[14] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,

Int. J. Prod. Res.41, 2581(2003).
[15] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, and A. Zverovitch,

Oper. Res. Lett.31, 357 (2003).
[16] V. Dimitrijevic and Z. Saric, J. Chem. Inf. Comput. Sci.102,

105 (1997).
[17] G. Laporte and F. Semet, INFOR 37, 114(1999).
[18] C. E. Noon and J. C. Bean, INFOR 31, 39(1993).
[19] L. V. Snyder and M. S. Daskin, ARandom-key genetic algo-

rithm for the generalized traveling salesman problem(North-
western University, see, l-snyder3@northweatern.edu,
m-daskin@northwestern.edu).

[20] O. Jellouli, in IEEE International Conference on Systems,
Man, and Cybernetics, 2001(IEEE, Piscataway, NJ, 2001),
Vol. 4, pp. 2765–2768.

[21] Y. Matsuyama, Trans. Inst. Electron., Inf. Commun. Eng. D-II
J74D-II , 416 (1991).

[22] J. C. Bean, ORSA J. Comput.6, 154 (1994).
[23] D. Levine, Comput. Oper. Res. 23, 547(1996).
[24] Y. C. Liang, H. W. Ge, C. G. Zhou, H. P. Lee, W. Z. Lin, S. P.

Lim, and K. H. Lee, Prog. Nat. Sci.13, 1 (2003).
[25] G. Reinelt, ORSA J. Comput.3, 376 (1991).

GENERALIZED CHROMOSOME GENETIC ALGORITHM… PHYSICAL REVIEW E 70, 016701(2004)

016701-13


